References¶
- Spakowitz2003
Spakowitz and Z.-G. Wang. “Semiflexible polymer solutions. I. phase behavior and single-chain statistics.” J. Chem. Phys. 119, 24 (2003): 13113.
- Spakowitz2004
Spakowitz, Andrew J., and Zhen-Gang Wang. “Exact results for a semiflexible polymer chain in an aligning field.” Macromolecules 37.15 (2004): 5814-5823.
- Spakowitz2005
Spakowitz, Andrew J., and Zhen-Gang Wang. “End-to-end distance vector distribution with fixed end orientations for the wormlike chain model.” Physical Review E 72.4 (2005): 041802.
- Spakowitz2006
Spakowitz, A. J. “Wormlike chain statistics with twist and fixed ends.” EPL (Europhysics Letters) 73.5 (2006): 684.
- Mehraeen2008
Mehraeen, B. Sudhanshu, E. F. Koslover, A. J. Spakowitz. “End-to-end distribution for a wormlike chain in arbitrary dimensions.” Physical Review E 77.6 (2008): 061803.
- Beltran2019
Beltran, D. Kannan, Q. MacPherson, and A. J. Spakowitz. “Geometrical heterogeneity dominates thermal fluctuations in facilitating chromatin contacts,” Physical Review Letters 123, 208103 (2019).
- Kratky1949
Kratky, Otto, and Günther Porod. “Röntgenuntersuchung gelöster fadenmoleküle.” Recueil des Travaux Chimiques des Pays‐Bas 68.12 (1949): 1106-1122.
- Yamakawa1997
Yamakawa, Hiromi, and Takenao Yoshizaki. Helical wormlike chains in polymer solutions. Vol. 1. Berlin: Springer, 1997.
- Arfken1999
Arfken, George B., and Hans J. Weber. “Mathematical methods for physicists.” (1999): 165-169.
- Doi1988
Doi, Masao, Samuel Frederick Edwards, and Samuel Frederick Edwards. The theory of polymer dynamics. Vol. 73. oxford university press, 1988.