.. _wlc_lcpoly: .. .. automodule:: wlc_lcpoly Polymer Field Theory: Liquid Crystalline Solutions ================================================== We define a system Hamiltonian [Spakowitz2003]_ of a collection of polymer chains and solvent molecules .. math:: \beta \mathcal{H} = \sum_{i=1}^{n_{p}} \frac{\epsilon}{2} \int_{0}^{L} \left( \frac{\partial \vec{u}_{i}}{\partial s} \right)^{\! \! 2} d s + \chi \int d \vec{r} \, \hat{\phi}_{s}(\vec{r} \,) \hat{\phi}_{p}(\vec{r} \,) - \frac{a}{2} \int d \vec{r} \, \hat{\mathbf{S}}(\vec{r} \,):\hat{\mathbf{S}}(\vec{r} \,) :label: sysH :math:`\hat{\phi}_{s}` and :math:`\hat{\phi}_{p}` are the local volume fractions of the solvent and polymer molecules, and :math:`\hat{\mathbf{S}}` is the tensorial nematic order parameter .. math:: \hat{\phi}_{s}(\vec{r} \,) & = & v \sum_{j=1}^{n_{s}} \delta (\vec{r}-\vec{r}_{j}) \\ \hat{\phi}_{p}(\vec{r} \,) & = & A \sum_{i=1}^{n_{p}} \int_{0}^{L} d s \delta (\vec{r}-\vec{r}_{i}(s)) \\ \hat{\mathbf{S}} (\vec{r} \,) & = & A \sum_{i=1}^{n_{p}} \int_{0}^{L} d s \delta (\vec{r}-\vec{r}_{i}(s)) %\nonumber \\ \left( \vec{u}_{i}(s) \vec{u}_{i}(s) - \frac{1}{3} \mathbf{I} \right) The Flory-Huggins parameter :math:`\chi` gives the strength of polymer-solvent interactions. The Maier-Saupe parameter :math:`a` gives the strength of aligning interactions that lead to liquid crystal phase phenomena. The thermodynamic behavior is found by finding the grand canonical partition function .. math:: \Xi & = & \exp [-\beta G(T,V,\mu)] \nonumber \\ & = &\sum_{n_{s},n_{p}=0}^{\infty} \frac{1}{n_{s}! n_{p}!} \frac{e^{\beta \mu L A n_{p}}}{v^{n_{s}} (L A)^{n_{p}}} \int \prod_{j=1}^{n_{s}} d \vec{r}_{j} \int \prod_{i=1}^{n_{p}} \mathcal{D}[\vec{r}_{i}] \nonumber \\ & & \hspace{0.1in} \times \prod_{\vec{r}} \delta (\hat{\phi}_{s}+\hat{\phi}_{p}-1) \prod_{s}\delta (\vec{u}_{i} - \partial_{s} \vec{r}_{i}) e^{-\beta \mathcal{H}[\hat{\phi}_{s},\hat{\phi}_{p},\hat{\mathbf{S}}]} :label: xidefine where :math:`\prod_{\vec{r}} \delta (\hat{\phi}_{s}+\hat{\phi}_{p}-1)` accounts for the incompressibility constraint :math:`\hat{\phi}_{s}+\hat{\phi}_{p} = 1` at all locations, and :math:`\prod_{s}\delta (\vec{u}_{i} - \partial_{s} \vec{r}_{i})` denotes the fixed chain length constraint :math:`\vec{u}_{i}=\partial_{s} \vec{r}_{i}`. This cannot be solved exactly due to the many-body interactions that are implicit within the Hamiltonian. To make progress, we use field-theoretical techniques~\cite{kn:fredreview,kn:matsen} to transform the many-chain problem into a single-chain problem in fluctuating effective potential fields. The field-theoretic representation emerges from a series of identity transformations that leave the theory unaffected. First, we introduce collective variables :math:`\phi_{s}`, :math:`\phi_{p}`, and :math:`\mathbf{S}` into the grand canonical partition function, giving .. math:: \Xi & = & \int \! \! \mathcal{D} \phi_{s} \int \! \! \mathcal{D} \phi_{p} \int \! \! \mathcal{D} \mathbf{S} \! \! \! \sum_{n_{s},n_{p}=0}^{\infty} \frac{1}{n_{s}! n_{p}!} \frac{e^{\beta \mu L A n_{p}}}{v^{n_{s}} (L A)^{n_{p}}} \int \prod_{j=1}^{n_{s}} d \vec{r}_{j} \nonumber \\ & & \hspace{0.1in} \times \int \prod_{i=1}^{n_{p}} \mathcal{D}[\vec{r}_{i}] \prod_{\vec{r}} \delta (\phi_{s} - \hat{\phi}_{s}) \prod_{\vec{r}} \delta (\phi_{p} - \hat{\phi}_{p}) \prod_{\vec{r}} \delta (\mathbf{S} - \hat{\mathbf{S}}) \nonumber \\ & & \hspace{0.1in} \times \prod_{\vec{r}} \delta (\phi_{s}+\phi_{p}-1) \prod_{s}\delta (\vec{u}_{i} - \partial_{s} \vec{r}_{i}) e^{-\beta \mathcal{H}[\phi_{s},\phi_{p},\mathbf{S}]} Second, rewrite the delta functions using Fourier representations .. math:: \prod_{\vec{r}} \delta (\phi_{s} - \hat{\phi}_{s}) = \int \! \! \mathcal{D} W_{s} \exp \left[ i \int \! \! d \vec{r} W_{s}(\vec{r}) \left( \phi_{s}(\vec{r}) - \hat{\phi}_{s}(\vec{r}) \right) \right] \\ \prod_{\vec{r}} \delta (\phi_{p} - \hat{\phi}_{p}) = \int \! \! \mathcal{D} W_{p} \exp \left[ i \int \! \! d \vec{r} W_{p}(\vec{r}) \left( \phi_{p}(\vec{r}) - \hat{\phi}_{p}(\vec{r}) \right) \right] \\ \prod_{\vec{r}} \delta (\mathbf{S} - \hat{\mathbf{S}}) = \int \! \! \mathcal{D} \mathbf{\lambda} \exp \left[ i \int \! \! d \vec{r} \mathbf{\lambda}(\vec{r}) : \left( \mathbf{S}(\vec{r}) - \hat{\mathbf{S}}(\vec{r}) \right) \right] The grand canonical partition function is now written as .. math:: \Xi & = & \int \mathcal{D} \phi_{p} \mathcal{D} W_{s} \mathcal{D} W_{p} \mathcal{D} \mathbf{S} \mathcal{D} \mathbf{\lambda} \exp \left\{ i \int d \vec{r} \, W_{s} (1-\phi_{p}) + \right. \nonumber \\ & & i \int d \vec{r} \, \left[ W_{p} \phi_{p} + \mathbf{\lambda}:\mathbf{S} \right] - \chi \int d \vec{r} \, \phi_{p} (1-\phi_{p}) + \nonumber \\ & & \left. \frac{a}{2} \int d \vec{r} \, \mathbf{S}:\mathbf{S} + \frac{1}{v} z_{s}(W_{s}) + \frac{e^{\beta \mu L A}}{L A} z_{p}(W_{p}, \mathbf{\lambda}) \right\} :label: grandcanon Here, we have defined the single-solvent-molecule partition function and single-polymer-chain partition function, given by .. math:: z_{s}(W_{s}) = \int d \vec{r} \, e^{-i v W_{s}(\vec{r} \,)} :label: zs and .. math:: & & z_{p}(W_{p},\mathbf{\lambda}) = \int \mathcal{D}[\vec{r} \,(s)] \exp \left\{- \frac{\epsilon}{2} \int_{0}^{L} \left( \frac{\partial \vec{u}}{\partial s} \right)^{\! \! 2} d s - \right. \nonumber \\ & & i A \int_{0}^{L} d s \left[ W_{p}(\vec{r} \,(s)) + \left. \mathbf{\lambda}(\vec{r} \,(s)) \! : \! \! \left(\vec{u} \vec{u} - \frac{1}{3} \mathbf{I}\right) \right] \right\} :label: zp This form still cannot be solved exactly, but we can find a saddle-point approximation that essentially gives the maximum term in the functional integrals. To do this, we write the free energy functional .. math:: & & - \beta G = i \int d \vec{r} \, W_{s} (1-\phi_{p}) + i \int d \vec{r} \, \left[ W_{p} \phi_{p} + \mathbf{\lambda}:\mathbf{S} \right] \\ & & - \chi \int d \vec{r} \, \phi_{p} (1-\phi_{p}) + \frac{a}{2} \int d \vec{r} \, \mathbf{S}:\mathbf{S} + \frac{1}{v} z_{s}(W_{s}) + \frac{e^{\beta \mu L A}}{L A} z_{p}(W_{p}, \mathbf{\lambda}) \nonumber which will be evaluated at values of :math:`\phi_{s}`, :math:`\phi_{p}`, :math:`\mathbf{S}`, :math:`W_{s}`, :math:`W_{p}`, and :math:`\mathbf{\lambda}` that maximize :math:`-\beta G` (or free energy minimum). We find the first variation of the free energy to be .. math:: & & - \delta \beta G = - i \int \! \! d \vec{r} W_{s} \delta \phi_{p} +i \int \! \! d \vec{r} (1- \phi_{p}) \delta W_{s} + i \int \! \! d \vec{r} W_{p} \delta \phi_{p} + i \int \! \! d \vec{r} \phi_{p} \delta W_{p} \nonumber \\ & & + i \int \! \! d \vec{r} \mathbf{\lambda} : \delta \mathbf{S} + i \int \! \! d \vec{r} \mathbf{S} : \delta \mathbf{\lambda} - \chi \int \! \! d \vec{r} (1 - 2 \phi_{p}) \delta \phi_{p} + a \int \! \! d \vec{r} \mathbf{S} : \delta \mathbf{S} \nonumber \\ & & +\frac{1}{v} \delta z_{s}(W_{s}) + \frac{e^{\beta \mu L A}}{L A} \delta z_{p}(W_{p}, \mathbf{\lambda}) where .. math:: & & \delta z_{s}(W_{s}) = - i v \int \! \! d \vec{r} \exp \left[ - i v W_{s}(\vec{r}) \right] \delta W_{s} \\ & & \delta z_{p}(W_{p}, \mathbf{\lambda}) = \int \! \! d \vec{r} \int \mathcal{D}[\vec{r} \,(s)] \int_{0}^{L} \! \! ds \left[ -iA \delta (\vec{r} - \vec{r}(s)) \delta W_{p}(\vec{r}) - i A \delta (\vec{r} - \vec{r}(s)) \left(\vec{u} \vec{u} - \frac{1}{3} \mathbf{I}\right) : \delta \mathbf{\lambda} \right] \nonumber \\ & & \exp \left\{- \frac{\epsilon}{2} \int_{0}^{L} \left( \frac{\partial \vec{u}}{\partial s} \right)^{\! \! 2} d s - i A \int_{0}^{L} d s \left[ W_{p}(\vec{r} \,(s)) + \mathbf{\lambda}(\vec{r} \,(s)) \! : \! \! \left(\vec{u} \vec{u} - \frac{1}{3} \mathbf{I}\right) \right] \right\} Setting :math:`\delta \beta G` to zero gives the self-consistent field equations: .. math:: 1-\phi_{p} & = & e^{-v w_{s}}, \\ \phi_{p} & = & - \frac{e^{\beta \mu L A}}{L A} \frac{\delta z_{p}}{\delta w_{p}}, \\ w_{p} - w_{s} & = & \chi (1 - 2 \phi_{p}), \\ \mathbf{h} & = & - a \mathbf{S}, \label{saddles} \\ \mathbf{S} & = & - \frac{ e^{\beta \mu L A}}{L A} \frac{\delta z_{p}}{\delta \mathbf{h}}, where :math:`w_{s} = i W_{s}`, :math:`w_{p} = i W_{p}`, and :math:`\mathbf{h}=i \mathbf{\lambda}`. Now consider the special case of having a homogeneous solution :math:`\phi_{s}(\vec{r}) = \phi_{s}`, :math:`\phi_{p}(\vec{r}) = \phi_{p}`, and nematic order parameter :math:`\mathbf{S}(\vec{r}) = S_{0} \left( \hat{z}\hat{z} - \frac{1}{3} \mathbf{I} \right)`. Define a normalized scalar order parameter :math:`m` by .. math:: m = \frac{S_{0}}{\phi_{p}} = \frac{1}{L} \int_{0}^{L} d s \left< \left( \frac{3}{2} u_{z}^{2}(s) - \frac{1}{2} \right) \right>, :label: mdefine where :math:`\left< \ldots \right>` indicates an average with respect to the single-chain, self-consistent-field Hamiltonian, .. math:: \beta \mathcal{H}_{0} = \frac{\epsilon}{2} \int_{0}^{L} \left( \frac{\partial \vec{u}}{\partial s} \right)^{2} d s - a \phi_{p} m A \int_{0}^{L} d s \left( u_{z}^{2}(s) - \frac{1}{3} \right). :label: hsaddle The grand potential density :math:`g = G/V` is equivalently expressed as the osmotic pressure defined through :math:`p=-[g(\phi_p)-g(0)]` and given by .. math:: \beta p & = & -\frac{1}{v} \log (1-\phi_{p}) - \chi \phi_{p}^{2} -\frac{1}{3} a \phi_{p}^{2} m^{2} \nonumber \\ & & \hspace{0.5in} - \frac{\phi_{p}}{v} + \frac{\phi_{p}}{L A} :label: gsaddle The chemical potential :math:`\mu` is given by .. math:: \beta \mu & = & \frac{1}{L A} \log \phi_{p} - \frac{1}{v} \log (1-\phi_{p})+ \nonumber \\ & & \hspace{0.5in} \chi (1-2 \phi_{p}) - \frac{1}{L A} \log q :label: musaddle where the single-polymer molecule orientation partition function :math:`q` is calculated from the self-consistent field Hamiltonian, Eq. :eq:`hsaddle`. The Helmholtz free energy density (up to an additive constant) for a single, homogeneous phase is .. math:: \beta f & = & -\beta p + \beta \mu \phi_{p} \nonumber \\ & = & \frac{\phi_{p}}{L A} \log \phi_{p} + \frac{(1-\phi_{p})}{v} \log (1-\phi_{p}) +\chi \phi_{p} (1-\phi_{p}) \nonumber \\ & & + \frac{a}{3} \phi_{p}^{2} m^{2} +\frac{\phi_{p}}{v} - \frac{\phi_{p}}{L A} - \frac{\phi_{p}}{L A} \log q :label: fsaddle This agrees with the Flory-Huggins theory when :math:`a=0` and :math:`q` is a constant (with unimportant factors that are linear in :math:`\phi_{p}`). Functions contained with the 'wlc_lcpoly' module ------------------------------------------------ .. automodule:: wlcstat.wlc_lcpoly :members: Example usage of 'q_lcpoly' --------------------------- We reproduce Fig. 6 from [Spakowitz2003]_ to demonstrate the use of 'q_lcpoly'. We show free energy relative to the isotropic state :math:`\Delta f` versus the order parameter :math:`m` for a thermotropic liquid-crystalline polymer system with :math:`N = L/(2lp)=3.3333` and :math:`2 l_{p} \kappa = 20.7582` (blue), :math:`2 l_{p} \kappa = 21.0606` (orange), and :math:`2 l_{p} \kappa = 23.6844` (green). .. plot:: import matplotlib.pyplot as plt import numpy as np from wlcstat.wlc_lcpoly import * lam_0 = 0 lam_f = 25 n_lam = 500 lam_vec = np.linspace(lam_0, lam_f, n_lam) length_kuhn = 3.333 plt.figure(figsize=(10,8)) font = {'family' : 'serif', 'weight':'normal', 'size': 18} plt.rc('font', **font) kappa_vec = np.array([20.7582, 21.0606, 23.6844]) for i_kap in range(len(kappa_vec)): kappa = kappa_vec[i_kap] m_val = np.zeros(n_lam) q_val = np.zeros(n_lam) f_val = np.zeros(n_lam) for i_lam in range(n_lam): lam = lam_vec[i_lam] q_val[i_lam] = q_lcpoly(length_kuhn,lam) m_val[i_lam] = lam / kappa f_val[i_lam] = kappa * length_kuhn * m_val[i_lam] ** 2 / 3 - np.log(q_val[i_lam]) plt.plot(m_val, f_val,'-') plt.ylabel(r'$\beta \Delta f$') plt.xlabel(r'$m$') plt.ylim((-0.6, 0.6)) plt.xlim((0, 0.8)) plt.tight_layout() plt.show()